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METAPOPULATION MODELS: AN EMPIRICAL TEST OF MODEL
ASSUMPTIONS AND EVALUATION METHODS

DEREK MARLEY JOHNSON?
Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, Florida 33124 USA

Abstract. Patch occupancy models provide a simple phenomenological approach to
evaluating ecological questions on a metapopulation scale. In this study, | use and modify
a patch occupancy model to evaluate the effects of synchronous extinctions correlated with
flooding and patch-size-dependent migration on the regional dynamics of a neotropical
beetle, Cephaloleia fenestrata. Various methods have been used to eval uate patch occupancy
models. Previous authors most commonly have evaluated patch occupancy models by lo-
gistic regression of incidence functions. Likelihoods produced from regression methods,
however, neglect autocorrelation in spatial occupancy patterns even though spatial auto-
correlation is common in ecological data. In this study, | used a Monte Carlo method of
model evaluation, which accounts for spatial autocorrelation. Results suggest that patches
undergo synchronous extinctions correl ated with flooding and this affects regional dynamics
of C. fenestrata. Immigration probability positively correlated with patch size, and emi-
gration probability negatively correlated with patch size, also affecting C. fenestrata re-
gional dynamics. The patch occupancy pattern was positively spatially autocorrelated at
only two of the sites, but was nearly significant at another. The logistic regression method
was a reasonable alternative to the Monte Carlo method for model evaluation. Other model
evaluation methods (fits to model development data, proportion of occupied patches, and
turnover rates) were inconsistent (at best) quantitative measures of a model’s fit to inde-
pendent data. When used to select among competing models, however, the fits to model
development data were reasonably good indicators of fits to independent data. Given the
increased complexity involved in using the Monte Carlo method, the simpler logistic re-
gression method may be a preferable alternative, especially when spatial autocorrelation

is minimal.
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INTRODUCTION

In recent years, metapopulation modeling has dem-
onstrated the strong effects that spatial processes can
have in shaping population dynamics and increasing
regional persistence (Hanski and Gilpin 1997). As hab-
itats continue to be fragmented by human activity, the
metapopulation approach may prove increasingly use-
ful in conservation efforts. Currently in vogue are patch
occupancy models, which are forms of metapopulation
models that ignore local population dynamics, instead
categorizing patches as being either occupied or empty
(Levins 1969, Hanski 1994). The advantage of patch
occupancy modelsisthat they require arelatively small
amount of empirical data compared to models with lo-
cal population dynamics. Hanski’'s (1994) incidence
function model (IFM) is perhapsthe most utilized patch
occupancy model, being used to investigate regional
dynamics of a range of organisms. Two possible crit-
icisms of Hanski’sbasic IFM are, first, that the methods
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used to validate patch occupancy models are lacking
in various ways and, second, that the model is too
simplistic, lacking biotic and abiotic ecological inter-
actions that may be important in shaping regional dy-
namics. The present study addresses the above two crit-
icisms of an IFM using a Neotropical beetle as a model
system.

Various methods have been used to validate patch
occupancy models. For example, independent data of-
ten are lacking, thus, model evaluation is based on the
same data used to build the model (Hanski 1994, Moila-
nen et al. 1998, Lindenmayer et al. 2001), hereon re-
ferred to as ** model development data.”” The predictive
power of such models is highly suspect. When inde-
pendent data are available, criteria for evaluating the
fit of a model have been based either on metapopula-
tion-level statistics such as the proportion of occupied
patches (Wahlberg et al. 1996) or turnover rates (asum-
mation of colonization and extinction rates; Hanski et
al. 1996). In these cases, seemingly good fits at the
metapopulation level may be a poor fit on a patch-by-
patch basis. Other methods have been based on patch-
level statistics such as patch-specific colonization and
extinction probabilities (Verboom et al. 1991). These
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methods require observations at multiple censuses,
thus, large amounts of data are necessary. Logistic re-
gression is a commonly used method of model fitting
that requires only one census of patch occupancy data.
This method, however, relies on ** pseudo-likelihoods”
meaning that, even though the empirical dataand model
simulations can contain spatial autocorrelation, ‘‘au-
tocorrelation among the spatial occupancy data is ne-
glected” in thelikelihood value (ter Braak et al. 1998).
By spatial autocorrelation, | refer to a higher correla-
tion of population dynamics between spatially proxi-
mate populations than between spatially distant pop-
ulations. Thus, all of the above methods are suboptimal
in various ways. Alternatively, a Monte Carlo method
of patch occupancy model fitting is superior to the other
methods because it requires only one census of occu-
pancy data and the likelihoods it produces do not ne-
glect aform of endogenous spatial autocorrelation (due
to dispersal limitation) in the occupancy data (Moila-
nen 1999). In this study, | compare the predictive val-
ues of competing patch occupancy models using the
Monte Carlo method on independent data. Moreover,
| ask whether the other methods listed above produce
quantitatively similar results as the Monte Carlo meth-
od in comparing competing patch occupancy models.
Finally, | test for spatial autocorrelation in the empir-
ical patch occupancy patterns.

For this study, | use Cephaloleia fenestrata Weise
(Chrysomelidae: Hispinae), a so-called rolled-leaf bee-
tle, as a model system (see Plate 1). C. fenestrata is a
specialist herbivore, feeding in the rolled leaves of the
2-3 m high monocot Plelostachya pruinosa (Regel) K.
Schum. (Marantaceae: Zingiberales), commonly known
as prayer plants, in tropical lowland wet forests of Cen-
tral America. P. pruinosa grows in discrete patches of
1-735 ramets, primarily in and near the flood zone of
the Puerto Viejo River at La Selva Biological Station
in Costa Rica. Previous studies have demonstrated the
following interactions between C. fenestrata and its
environment. First, stochastic flooding of the Puerto
Vigjo River completely inundated a subset of P. prui-
nosa patches, causing high beetle mortality (Johnson
2004b). Second and third, immigration and emigration
rates of adult C. fenestrata were dependent on patch
size, where larger patches acted as greater attractorsto
immigrants and stronger adherents of potential emi-
grants (Johnson 2003). The above ecological interac-
tions are assumed to be unimportant to regional dy-
namics in Hanski’s basic IFM. Herein, the effects of
these abiotic and biotic ecological interactions on the
regional dynamics of C. fenestrata are examined
through modification and analysis of the I[FM.

Spatial autocorrelation in population dynamics is
common in ecological data (Lichstein et al. 2002). Spa-
tial autocorrelation can be caused by exogenous or en-
dogenous factors. For example, an exogenous factor is
the Moran effect, which is spatial synchrony in dy-
namics caused by climatic events (Moran 1953). Al-
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PLAaTE 1. Adult Cephaloleia fenestrata on the host plant,
Pleiostachya pruinosa. Adults average 8 mm in length. The
five dark dots on the elytra (three in the upper left region in
the shape of atriangle, one in the upper right, and one in the
lower right) are from a concurrent mark—recapture study in
which beetles were individually marked with a series of punc-
turesto the elytrausing an insect pin. Photo by D. M. Johnson.

ternatively, theoretical analyses of spatially explicit
models demonstrate that endogenous factors, such as
limited dispersal or conspecific attraction, are sufficient
to cause spatial autocorrelation in population distri-
butions (De Roos et al. 1991). Likewise, in a meta-
population context, patch occupancy patterns can be
spatially autocorrelated (Smith and Gilpin 1997). In
this study, | use empirical data to detect spatial auto-
correlation in the occupancy patterns of C. fenestrata.
I then compare the predicted likelihoods from inde-
pendent data (data not used to parameterize the model)
using logistic regression (neglects spatial autocorre-
lation) versus the Monte Carlo technique (accounts for
endogenous spatial autocorrelation). | also test the abil-
ity of model fits derived from model development data,
and other model evaluation methods (based on turnover
rates and mean patch occupancy), to act as surrogates
for the more complex Monte Carlo method of model
evaluation.

Stubpy SITES

This study was conducted at four study sites. La
SelvaBiological Station, Heredia Province, Costa Rica
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(10°26’ N, 83°59" W), covers 1510 ha of lowland wet
forest on the Caribbean slope of Northeastern Costa
Rica. La Selva receives 4000 mm of precipitation per
year with no month receiving less than 100 mm. The
two study sites at La Selva, referred to as La Selva |
and La Selva ll, lie along the Puerto Viejo River, on
and near the river floodplain.

Corcovado National Park, Puntarenas Province, cov-
ers 43735 ha on the Osa Peninsula of southern Costa
Rica on the Pacific side. The study was conducted at
Sirena Station (8°29" N, 83°35’ W), which is located
on the Corcovado plain and receives 3000—3800 mm
of precipitation per year (Hartshorn 1983). The study
siteislocated approximately 1 km from the ocean. The
patches at Corcovado lie above the floodplain of local
rivers and streams.

Hacienda Baru, Punterenas Province, covers 320 ha
in the coastal lowland of the Pacific slopein Costa Rica
(9°15' N, 84°14' W). The climate is similar to that of
Corcovado, but perhaps a bit drier. The study site is
located approximately 1 km inland from the ocean,
where uneven topography gives way to the coastal
plain. The study site is on the slope of a hill that does
not flood.

DATA COLLECTION

C. fenestrata occupancy and dispersal data were col-
lected in 75 patches of P. pruinosa at La Selva l. In
addition, three other characteristics were recorded for
each patch: size (number of ramets), spatial location,
and whether the patch was in the flood zone. The flood
zone was defined for this project as the area where a
December 1999 flood reached 1.5 m depth, enough
water to kill immature beetles and flush out or kill adult
beetles. Patch size was defined by the number of ramets
that were present in June 1999. Spatial locations of the
patches were based on Euclidean distances and com-
pass directions to the nearest grid post on an x-y grid
system at La Selva. | determined whether a patch was
in the flood zone by direct observations during the
December 1999 flood, and by examining postflood sed-
iment deposits on leaves of plants following the flood.
Seventeen patches were in the flood zone.

Patch occupancy for each of the 75 patches was de-
termined at five censuses conducted at 6-mo intervals,
between March 1999 and March 2001. Six months is
the approximate generation time of C. fenestrata (John-
son 2004a). During every census, | thoroughly
searched leaf petioles in each patch until either an im-
mature C. fenestrata was found, or until the entire patch
was censused. If immature beetles were present then |
considered a patch occupied; because adults could be
transients, unmated females, or solo males, they were
not taken as evidence for the presence of breeding pop-
ulations.

Patch occupancy data at a single census were col-
lected from three other sites: La Selva Il (32 patches),
Corcovado (42 patches), and Hacienda Baru (41 patch-
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es). La Selvall was mapped using the same procedures
as used at La Selva l. La Selva Il was approximately
1 km to the east of La Selva |I. Patch coordinates at
Corcovado and Hacienda Baru are relative to grids that
| created. Hacienda Baru was censused in November
2000, La Selva Il was censused on May 2001, and
Corcovado was censused in June 2001. These patch
occupancy data were used to test the predictive value
of the eight competing IFMs.

INcIDENCE FUNCTION MODEL

ThelFM isaMarkovian chain model in which patch-
es are viewed as being occupied or empty based on
stochastic colonization and extinction events (Hanski
1994). The incidence function (J,) is the probability
that patch i is occupied at a given time. Hanski’s orig-
inal IFM makes specific assumptions about regional
dynamics (i.e., exponential decay function of dispersal
probability, the Allee effect on patch colonization, ex-
tinction probability is a power function of patch size,
and the rescue effect), some of which were poor fits to
the C. fenestrata occupancy pattern at La Selva |l (or
did not significantly improve the fit); thus, | modified
the IFM accordingly when an alternative model struc-
ture was a better fit to the C. fenestrata system (see
Appendix A for analyses). | note all alterations to the
IFM when the particular equations are presented bel ow.
In addition, because previous analyses indicated that
postnatal dispersal (dispersal from the natal patch soon
after eclosion) (Johnson and Horvitz 2005) and im-
migration from outside the study area (Johnson 2003)
may be important to the regional dynamics of C. fe-
nestrata, | also critically tested their effects on the fit
of the IFM, but found that they did not improve the
performance of the model (see Appendix A).

InthelFM, theincidence probability (J;) isafunction
of the colonization probability (C;) and the extinction
probability (E;), given by

C.
J = L
' C +E

(€

Note, Eqg. 1 lacks the ‘‘rescue effect’” (where a patch
is ““rescued”’ from extinction by a simultaneous col-
onization event; Brown and Kodric-Brown 1977, Han-
ski 1994) because the IFM without the rescue effect
was a better fit to the C. fenestrata occupancy data.
The colonization probability (C) of patch i is a hy-
perbolic function of the number of immigrants (M,) into
the patch:

_ Mi
M +y

i @
and y is the ‘*half saturation’” parameter at which the
colonization probability equals 0.5 for y equal to M.
The original IFM models colonization as an s-shaped
function of the number of immigrants, thus, assuming
an Allee effect. The model with the hyperbolic response
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was a better fit to the C. fenestrata patch occupancy
data (Appendix A). The number of immigrants into
patch i,

M =B 121 [pAd;*)] wherei # | (3

isasummation of the number of migrantsfrom all other
patches j in the metapopulation. The number of mi-
grants from patch j to patch i, is a function of three
patch characteristics: patch j's occupancy status (p; =
1if occupied, p, = O if empty), patch size (A), and the
Euclidean distance between patches i and j (d;) (Mac-
Arthur and Wilson 1967, Hanski 1994). The dispersal
kernel in this model is a power decay function of the
Euclidean distance (d) separating the two patches
(d;) rather than an exponential decay function as in
the original IFM. While | concede that this is a rather
phenomenological approach to modeling dispersal, |
chose the power decay function because it was a much
better descriptor (AAIC = 12.57 to 14.78) of the re-
gional dynamics of C. fenestrata than other dispersal
kernels (see Appendix A), which tended to have too
skinny a tail at long distances, thus, more isolated
patches were predicted to be greatly under-colonized.
B normalizes the number of migrants dispersing out of
donor patches (js) so it is consistent with the empiri-
caly estimated number of migrants in a concurrent
study (Johnson 2003). This function also assumes that
the number of beetles in a patch isin direct proportion
to the size of the patch, an assumption supported by
empirical data (Johnson 2003).
Extinction probability,

AX'

E = min(i 1) ()
isinversely related to patch size, which is assumed to
be positively related to population size (Boorman and
Levitt 1973, Jones and Diamond 1976, Schoener and
Spiller 1987). This equation assumes that extinction
probability is a decaying power function of patch size
(where . and x are curve shaping parameters). | tested
to determine whether an exponential function was a
better fit, but it was not (Appendix A); although the
low AAIC = 3.72 indicates that neither models has
strong support over the other. Fundamentally, small
populations are most prone to extinction in this model
(MacArthur and Wilson 1967). Extinction rate is as-
sumed to be temporally constant and asynchronous
among patches.

Model modifications

The IFM was modified to include the following eco-
logical processes: Synchronous extinction caused by
flooding, patch-size-dependent immigration, and
patch-size-dependent emigration. First, synchronous
extinctions caused by flooding, which can be a cause
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of exogenous spatial autocorrelation, were added to the
IFM by altering the extinction equation to

A

E = min(ﬁ 1) (5)
when patch i is flooded. The parameter w is the effect
of flooding on extinction probability. When o > .,
flooding increases the probability of extinction. Ex-
tinction probabilities of patches in the upland are al-
ways governed by the equation with p because they
are assumed to never flood. For patches in the flood
zone, the equation with o applies in time periods with
a flood, while the equation with p applies in periods
without a flood. Flooding is a stochastic event deter-
mined probabilistically in model simulations. The
probability of a flood during one time step was set at
0.5 per 6 mo, an estimate based on the observed fre-
quency of flooding events from 1999 to 2002; a total
of four floods over the four year period (D. Johnson,
personal observation).

Second and third, the patch-size-dependent migra-
tion model (PDM) is a modification of the basic model
in which patch-size-dependent emigration (PDE) and
immigration (PDI) are added through the parameters

{em @nd {;,, respectively:
M = A > (p A i 4] (6)
j=1

when ¢, > 0 per capita emigration is negatively cor-
related with patch size, and when ¢;,, > O per capita
immigration is positively correlated with patch size.
This model reduces to Hanski’s basic IFM migration
equation when {;,, = 0 and {,,, = 0. Again, thisequation
assumes that population size is in direct proportion to
patch size. Adding nonzero values of ¢;,, and (., to the
migration Eq. 6 alters the predicted number of migrants
in the model compared to Eg. 3. To hold the migration
rate in the modified models equal to the empirically
observed level, the normalization parameter g was re-
calculated for each combination of ¢, and {,, used in
this equation. Thus, the total number of migrants was
held constant, but the distribution of the migrants was
altered by the patch-size-dependent migration param-
eters.

Eight competing IFMs were created, which are all
permutations of the three model modifications outlined
above: explicit flooding, PDE, and PDI. The effects of
each of these three ecological interactions on the patch
dynamics of C. fenestrata were assessed by comparing
the fits of the modified IFMs (with and without the
ecological interactions modeled explicitly) to the em-
pirical occupancy data.

Parameter estimation

The IFMs were parameterized from C. fenestrata oc-
cupancy and dispersal data collected in 75 patches on
P. pruinosa at the La Selval siteat La SelvaBiological
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Station. Population-level parameters (a, {em, and {im)
in the IFM were calculated by maximum likelihood
estimation (in the software Matlab [The MathWorks,
Natick, Massachusetts, USA]) using migration data
from a 1-yr mark—recapture study at La Selval (at 25-
d intervals, Johnson 2003). The metapopulation-level
parametersy, X, p, and o were estimated from turnover
data (extinctions, colonizations, or lack there of) from
the five censuses at La Selval by maximum likelihood
estimation in Matlab. In the IFM, the patch occupancy
pattern (O) is a vector of ps (equals 1 when a patch is
occupied and O when it is empty), with vector length
equal to the number of patches (N). A given transition
probability from occupancy pattern O,_, to O, can be
calculated analytically, given the vector of model pa-
rameters @, by calculating the product of all patch-spe-
cific transition probabilities based on the equation

P[0 O 1, O]

i, (1) if pt—1) = 0N p(t) =10

al-co iftpt-n=0np®=0

- H% itpt-)=1npm=05
[l = ifpt—1)=1Nnp)=1g

The parameter p; is defined as in Eq. 3. Because like-
lihoods are often miniscule, it is traditionally trans-
formed into a negative log-likelihood

L(O:|®) = ~In(P[O,]| O, ,,0]) (®

and is minimized. The —log-likelihood was summed
for transitions between all five empirical occupancy
patterns. Parameter estimation of the metapopulation-
level parameters was conducted by the method of sim-
ulated annealing (Kirkpatrick et al. 1983). This method
is advantageous over iterative improvement methods
because it is more likely to find a global maximum
likelihood and not get stuck in local maximums. The
estimation method was repeated for each parameteri-
zation to ensure that the estimations converged on the
same values. The values of L were adjusted according
to Akaike's information criterion

ASSESSING THE PREDICTIVE VALUES
oF COMPETING MODELS

Assessing the predictive value of a model requires
empirical data, preferably data not used to parameterize
the model (Power 1993). In this study, independent
patch occupancy data from four sites were used to com-
pare the predictive values of the eight competing IFMs.
Because turnover data from La Selva | was used to
parameterize the models, one of the occupancy patterns
(in this case the first occupancy pattern) could be used
to independently assess the predictive values of the
models (known as data splitting). A single occupancy
pattern was collected at the other three sites. Predictive
values were assessed by comparing the Monte Carlo-
derived likelihoods to statistics from the following
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methods: likelihoods from model development data,
and logistic regression, turnover rates, and mean pro-
portion of patches occupied from independent data.
Logistic regression technique

Assessing the predictive value of a patch occupancy
model involves asking what is the probability that the
model would produce an empirical occupancy pattern.
A traditional method of estimating this probability for
patch occupancy modelsis by calculating a probability
of the observed occupancy pattern (where p = 1 when
a patch is occupied and = 0 when it is empty) based
on the patch-specific incidence probabilities (J,):

P= H [(P)@) + (1 — p)(@ — I)] )

(alogistic regression technique). The incidence prob-
abilities (J;) were estimated by running a long model
simulation and cal culating the proportion of times that
each patch was occupied in that simulation. The pa-
rameter N is the number of patches in the metapopu-
lation. The probability P is termed a ‘‘ pseudo-likeli-
hood”’ because the ‘* autocorrelation among the spatial
occupancy data is neglected” in the likelihood esti-
mation process (ter Braak et al. 1998). For example, if
there are two neighboring patches each with J = 0.5,
then using the logistic regression method we would
calculate the probability that both patches are occupied
at one time is P = (0.5)(0.5) = 0.25. However, this
method does not consider the conditional possibility
that patch 1 may be more likely to be occupied given
that patch 2 is occupied than if patch 2 were empty,
because patch 2 would act as a source for colonization
(which would create spatially correlated data and, thus,
independence among data points would be violated).

The Monte Carlo method

The Monte Carlo method is an alternative to the
logistic regression method. Thisisanovel modification
of the Monte Carlo method of parameter estimation
(Moilanen 1999). In this method, the empirical occu-
pancy pattern O, is known. To estimate the likelihood
of the given occupancy pattern O,, theoretically, one
could run a long model simulation and calculate the
proportion of times that the simulation produced the
pattern. Thisisimpractical, however, with even amod-
erate number of patches because the state space is too
large. Another alternativeisto run many replicate Mon-
te Carlo simulations, stopping at a given time (t) to
create occupancy pattern X,, and calculating the pro-
portion of times X, = O,. This method is fundamentally
the same as the previous, also suffering from the chance
that X, = O, is miniscule except when there are only
a few patches in the metapopulation. With a minor
modification, however, this method is useful. Instead
of naming the simulated pattern X,, it is named X,_,.
We can then calculate the exact transition probability
from X,_; to O,. By repeating this many times (N will
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Fic. 1. Proportion of Pleiostachya pruinosa patches oc-
cupied by Cephaloleia fenestrata from March 1999 to March
2001.

signify the number of replicates), we can estimate the
likelihood of O, by taking the arithmetic mean of the
above calculated transition probabilities:
N

POJO] =5 > PIOIX 1, @], (10
This method, unlike the logistic regression method, ac-
counts for spatial dependency in the occupancy pattern
(Moilanen 1999). The Monte Carlo method is sensitive
to any bias in the selection of occupancy patterns for
X,_;. To avoid such bias, the simulations were initiated
at randomly generated occupancy patterns and allowed
to run for 1000 time steps before occupancy patterns
were selected at 200 time step intervals for use as the
Xi_, vectors.

SPATIAL AUTOCORRELATION

| probed for evidence of spatial autocorrelation in
the observed occupancy statuses using a modification
of Moran’s | statistic (Smith and Gilpin 1997). For the
Moran statistic, residuals, the difference between the
incidence function and the occupancy status (p; = O or
1), were calculated for each patch (J; — p;). The co-
variance of each possible pair of patcheswas calculated
by multiplying their respective residuals. Each covari-
ance was multiplied by a measure of connectivity of
the two patches, in this case a power decay function
of the Euclidean distance between the patches, thus,
covariance between neighboring patches is more heavi-
ly weighted than between nonneighboring patches. The
sum of each weighted covariance is divided by the sum
of the square of the residuals, and is the | statistic:

Mz

N

die(p — J)(p; — J)

i=1 j=1
| = =

N 11)
; (P — J3)?
where i # j. When neighboring patches in empirical

occupancy data are more likely to be in the same state
than would be predicted from the J values, then em-
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pirically generated | statisticishigher than thel statistic
calculated from randomly generated occupancy pat-
terns created probabilistically from the J values. Thus,
if we assume that the model is representative of ob-
served metapopul ation dynamics, then a significant dif-
ference between | statistics is evidence for spatial au-
tocorrelation in the empirical metapopulation pattern.
The | statistics from empirical occupancy data were
contrasted against a probability distribution of | statis-
tics that were calculated from 1000 independently gen-
erated occupancy patterns from the incidence function
values (J) for each of the four study sites (thus, the
latter lack spatial autocorrelation).

REsuLTs

The proportion of occupied patches in La Selva |
ranged from 0.45-0.64 with a turnover rate of 24.25
per 6 mo (Fig. 1). The two observed decreases in the
proportion of occupied patches coincided with two
flood events, and were primarily caused by population
extinctions in the flood zone (Fig. 2). The distribution
of P. pruinosa patches at La Selval is provided in Fig.
3A. The proportion of occupied patches at the other
three sites was 0.59, 0.71, and 0.88 at La Selva Il,
Hacienda Baru, and Corcovado, respectively.

Of the eight IFMs with all permutations of the three
possible effects on metapopulation dynamics, the mod-
el with flooding and patch-size-dependent emigration
(FL + PDE) was the best fit to the model-devel opment
data based on the lowest AIC value (Table 1). When
patch-size-dependent immigration was added to the
model (FL + PDM), the fit was only slightly worse
(AAIC = 1.02), thus, neither model was well supported
over the other. Parameter estimates for all models are
available in Appendix B. Adding flooding to the model
improved the fits significantly (AAICs > 18), lending

1.0
_S O upland
< 0.8 b
8. [l Flood zone
o
2 0.6
[ -y
o
3]
£ 0.4
5 a
§ 0.2 1 a
[O]
e I ™

0 T
No flood Flood

Fic. 2. Comparison of the proportion of patches going
extinct over one time step in the flood zone and upland during
time steps with and without a flood event (different letters
above the bars indicate significantly different distributions
according to pairwise contingency table analyses at the « =
0.05 significance level).
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(A) The distribution of P. pruinosa patches at La Selva l. The size of the circle is an indicator of the size of the

patch (range 1-735 ramets). Open circles indicate the flood zone, and closed circles indicate upland habitat. (B—D) Plots of
model-predicted (B) colonization probability, C; (C) extinction probability, E; and (D) incidence functions, J, on observed
values from the five time steps of empirical data at La Selval. The dashed line represents a hypothetical perfect relationship
between predicted and observed values, while the solid line represents the observed relationship. All y-intercepts (b,), slopes
(b,), and r? values were within 95% confidence limits generated from analyses of model-generated occupancy data (200 sets
of data consisting of five time steps each). Empirical values are given below with model-generated 95% ci in brackets. (B)
Colonization probability: b, = 0.16 [—0.11, 0.24], b, = 0.81 [0.66, 1.45], r?2 = 0.17 [0.11, 0.49]. (C) Extinction probability:
b, = 0.04 [-0.08, 0.18], b, = 1.30 [0.57, 1.57], r2 = 0.34 [0.08, 0.45]. (D) Incidence function: b, = 0.03 [-0.17, 0.16], b,

= 0.87[0.78, 1.19], r2 = 0.36 [0.33, 0.64].

strong support. Adding patch-size-dependent emigra-
tion also improved the fits, lending strong support
(AAICs > 7). Adding patch-size-dependent immigra-
tion had little effect on the model fits (AAICs < 2).
The basic model was among the poorest fitting models.
The predicted colonization probabilities, extinction
probabilities, and incidence functions at La Selva |
were reasonabl efitsto the observed data; the regression
statistics (r?, y-intercept, and slope) were all within the
95% ci generated from model simulations (Fig. 3B—
D).

All of the modified models accurately predicted the
proportion of occupied patches at La Selval, La Selva
I1, and Hacienda Baru within less than 2 sp from the
mean observed (Appendix C). However, all of the mod-
els significantly underestimated the proportion of oc-
cupied patches at Corcovado by 4 to 8 spb from the
mean (Appendix C). In general, the models with patch-

size-dependent migration and flooding modifications
tended to predict ahigher proportion of occupied patch-
es than the basic model for all four sites (Appendix
C). All of the models predicted the turnover rate at La
Selva | by less than 1 sp from the mean observed
(Appendix C).

Likelihood ratios were used to evaluate whether each
model was among the best-fit models to independent
data at each of the four sites. Each of four models (PDI,
PDM, FL + PDI, and FL + PDM) was among the best
fits at three of the four sites (Table 2). The FL and FL
+ PDE was among the best fits at two of the four sites,
while the basic and PDE models were the worst pre-
dictive models, being among the best fits at none of
the sites. In summary of these results, adding PDI and
FL to the models improved their predictive ability,
while PDE had no noticeable effect. Another method
to test the fit of the model to the empirical data is to
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TaBLE 1. Akaike's information criteria (model fits) for the
eight incidence function models.

Free

Model parameters AlC AAIC
Basic 3 170.47 26.32
PDE 3 162.69 18.54
PDI 3 171.46 27.31
PDM 3 163.73 19.58
FL 4 151.91 7.76
FL + PDE 4 144.15 0.00
FL + PDI 4 152.92 8.77
FL + PDM 4 145.17 1.02

Notes: Smaller values indicate better fits, and the AAIC
indicates the difference between the particular model and the
best-fit model. AAIC values <7 indicate that the model is not
reliably distinguishable from the better fit model, whilevalues
>7 indicate that the model is a substantially poorer fit. Ab-
breviations: FL, flooding is explicit in the model; PDE, per
capita patch-size-dependent emigration; PDI, per capita
patch-size-dependent immigration; PDM, per capita patch-
size-dependent migration (PDE + PDI). The *‘free parame-
ters” column gives the number of parameters estimated in
the estimation model (the three parameters refer to x, ., and
y; four parameters refers to o in the flooding models). All
other parameters were estimated independently of these anal-
yses.

compare the predicted likelihood of the empirical data
to a distribution of predicted likelihoods of simulated
occupancy patterns. This method confirmed that the FL
+ PDM model was a good fit to the empirical data at
al four sites (La Selval, P = 0.68; La Selvall, P =
0.97; Hacienda Baru, P = 0.93; Corcovado, P = 0.27),
as was the PDI model (all P > 0.05). Each of the
remaining six models were good fits to the empirical
data at three of the four sites (all excluding Corcovado).

Relationships between the fits from Monte Carlo
and other evaluation methods

The Monte Carlo method is the only method used
herein that estimates likelihoods and accounts for spa-
tial autocorrelation due to endogenous effects; thus, |
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compare the predictive values of all other methods to
the Monte Carlo method. The correlations between
model fits to independent data (generated from the
Monte Carlo method) and thefitsto model development
data were positive and significant at La Selva Il (r2 =
0.67, P < 0.05) and Hacienda Baru (r2 = 0.57, P <
0.05), but was insignificant (all P > 0.05) at La Selva
| and Corcovado (r2 = 0.01 and r2 = 0.22, respectively).
There was a marginal positive relationship between a
model’s ability to predict the turnover rate (measured
as the difference between the predicted and observed
turnover rates divided by the observed sp at La Selva
1) and the model fits generated from the Monte Carlo
method (r?2 = 0.43, P = 0.07); however, all eight of
the models satisfactorily predicted the observed turn-
over rate (Appendix C). The relationship between a
model’s ability to predict the mean proportion of oc-
cupied patches (measured as the number of standard
deviations the predicted proportion diverged from the
observed proportion of occupied patches) and fits gen-
erated from the Monte Carlo method were insignificant
(P > 0.05) at all sites: LaSelval (r2 = 0.01), LaSelva
Il (r2 = 0.30), Hacienda Baru (r> = 0.33), and Cor-
covado (r? = 0.28). There was a strong positive rela-
tionship between model fits using the likelihood based
on the logistic regression method and the Monte Carlo
method at Hacienda Baru (r? = 0.98, P < 0.05) and
Corcovado (r2 = 0.96, P < 0.05), a moderately strong
significant relationship at La Selvall (r2 = 0.57, P <
0.05), and a positive but marginally insignificant re-
lationship at La Selval (r2 = 0.48, P = 0.06) (Fig. 4).

Spatial autocorrelation

Whether spatial correlation is detected in an occu-
pancy pattern can obviously be dependent upon the site
and on the model used to generate the J values. So for
the purposes of this analysis, | focused on the FL +
PDM model because this was the best predictor of oc-
cupancy patterns across the four sites based on the

TaBLE 2. Model fits (—log likelihoods) to independent data, with likelihood ratios (R) in parentheses, using Monte Carlo

methods at four sites.

No. sites where

model was
accepted
Model LS1 LS2 HB CcO (R< 6.64)
Basic 49.97 (7.38) 18.19 (10.04) 23.12 (10.50) 74.03t (93.94) 0
PDE 51.51 (10.46) 16.79 (7.24) 24.29 (12.84) 35.83 (17.54) 0
PDI 46.28 (0.00) 15.43 (4.52) 19.23 (2.72) 62.08 (90.04) 3
PDM 47.69 (2.82) 15.34 (4.34) 19.09 (2.44) 38.7171 (23.30) 3
FL 52.71 (12.86) 15.36 (4.38) 20.75 (5.76) 44.601 (35.08) 2
FL + PDE 53.07 (13.58) 15.63 (4.92) 21.74 (7.74) 27.06 (0.00) 2
FL + PDI 49.25 (5.94) 14.97 (3.60) 17.87 (0.00) 43.701 (33.28) 3
FL + PDM 50.04 (7.52) 13.17 (0.00) 18.24 (0.74) 29.27 (4.42) 3

Notes: Site abbreviations: LS1, La Selva |; LS2, La Selva Il; HB, Hacienda Baru; CO, Corcovado. All model fits were
within the 95% confidence interval calculated from simulated data with the exception of those from Corcovado that are
indicated by daggers (critical P = 0.05). All likelihood ratios are pairwise calculations between —log likelihood of the given
model (row) and that of the best-fit model at that particular site (column). Values of R < 6.64 indicate that the fits of the
two models are not significantly different at a 99% confidence level. The last column is the number of sites for which the
model was acceptable (insignificantly different from the best-fit model) based on likelihood ratios.
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FiG. 4. Relationship between model fits based on logistic regression and Monte Carlo methods of measuring likelihoods
(La Selva |, F;¢ = 15.98, P = 0.007; La Selva Il, F; = 21.42, P = 0.004; Hacienda Baru, F,s = 27.90, P = 0.002;
Corcovado, F,s = 104.48, P < 0.0001; N = 8 for all comparisons).

Monte Carlo generated model fits (Table 2). Positive
spatial autocorrelation was detected at Hacienda Baru
(P < 0.05) and Corcovado (P < 0.01). For the other
two sites, the probability values associated with posi-
tive spatial autocorrelation were suggestive, but insig-
nificant (La Selval, P = 0.15; La Selvall, P = 0.16).
While these findings suggest that there is spatial au-
tocorrelation in at least two of the occupancy patterns,
this conclusion is dependent on the assumption that the
model is a reasonable descriptor of the beetles meta-
population dynamics.

DiscussioN

Spatial autocorrelation is ubiquitous in ecological
data. For example, Smith and Gilpin (1997) found
strong positive spatial autocorrelation in a metapopu-
lation of the American pika where southern patches
were disproportionately empty compared to northern
patches. Smith and Gilpin (1997) hypothesized that the
spatial autocorrelation was caused by two possible fac-
tors, either the *‘ position effects,”” which, in short, com-
prise aset of exogenousfactors(i.e., climate, predation,
competition), or ‘‘spatial autocorrelation effects”
which essentially are endogenousfactors (i.e., dispersal
limitation). Given the best-fit model, the patch occu-
pancy pattern of C. fenestrata was positively spatially
autocorrelated at two of the sites and positively, but
insignificantly, spatially autocorrelated at the other
sites. Results suggest the presence of exogenous spatial
correlating factors because portions of two of the four
sites were flooded during the study. In addition, en-
dogenous effects (dispersal limitation) may also be a
cause of a portion of the observed spatial autocorre-

lation in the observed patch occupancy patternsjudging
from dispersal limitation observed in a concurrent
mark—recapture study (Johnson 2003).

Previous methods of evaluating patch occupancy
models have used a variety of methods that are lacking
in various ways. Using model development data to
evaluate a model (Hanski 1994, Moilanen et al. 1998)
lacks a rigorous test that requires independent data
(Power 1993). Results from the present study indicate
that fits to model development data are inconsistent
indicators of the predictive value of a model. Meta-
population-level statistics such as the proportion of oc-
cupied patches (Wahlberg et al. 1996, McCarthy et al.
2000) and turnover rates (Hanski 1994) ignore possibly
important patch-specific information. The present
study indicates that the proportion of occupied patches
is a poor indicator of the predictive power of a model.
Turnover rate was only a fair predictor of the model
fit, explaining 44% of the variation in the model fits
estimated from the Monte Carlo method. Such broad-
stroke approaches may falsely suggest that a model fits
the data, when in fact on a patch-by-patch basis the
model is a poor fit.

L ogistic regressions are commonly used toolsin both
parameterizing and eval uating patch occupancy models
(Hanski 1994, Hanski et al. 1996, Wahlberg et al. 1996,
ter Braak et al. 1998, Moilanen et al. 1998, McCarthy
et al. 2001). When only one occupancy pattern isavail-
able, likelihoods produced by logistic regressions dis-
count autocorrelation in the spatial occupancy pattern
(instead assuming independence among data points),
thus, are termed pseudo-likelihoods (ter Braak et al.
1998). In the present study, | compared the pseudo-
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likelihoods from logistic regression to likelihoods de-
rived from Monte Carlo simulation of C. fenestrata
patch dynamics. At three of the four sites there were
significant positive correlations between the likeli-
hoods produced from the Monte Carlo and logistic re-
gression methods, while the relationship at the fourth
site was marginally insignificant. These results suggest
that, even when there is spatial autocorrelation in oc-
cupancy data, the logistic regression is an acceptable
measure of model fits to metapopulation data.

Concurrent studies on C. fenestrataindicated the fol-
lowing points: stochastic flood events cause great re-
ductions of C. fenestrata populations in the flood zone
(Johnson 2004b), immigration probability is positively
correlated with patch size, and emigration probability
is negatively correlated with patch size (Johnson 2003).
In the present study, | used the IFM to eval uate whether
these three aspects of C. fenestrata biology affect the
beetle’'s regional population dynamics. Explicitly mod-
eling regional extinction caused by flooding improved
the fits of the models, suggesting that flooding is im-
portant to the regional dynamics of C. fenestrata. The
traditional patch occupancy models such as the IFM
assume that extinction is asynchronous among neigh-
boring patches, and that synchrony in colonization
events causes observed spatial correlation in occupancy
patterns (Hanski 1994). Results from the present study
indicate the presence of spatial synchrony in extinc-
tions due to flooding events.

Patch-size-dependent migration has been demonstrat-
ed in a number of species (Raupp and Denno 1979,
Kareiva 1985, Turchin 1986, Bach 1988, Hill et al. 1996,
Hanski et al. 2000). In general, immigration probability
is positively correlated with patch size while emigration
probability is negatively correlated with patch size (Kar-
eiva 1985, Turchin 1986, Hanski et al. 2000, Johnson
2003). These results are consistent with the resource
concentration hypothesis which states that herbivores
are more likely to find and remain in large stands of
their host plants (Root 1973, Kareiva 1985). For C. fe-
nestrata, adding patch-size-dependent emigration im-
proved the fits to model development data, but patch-
size-dependent immigration consistently improved the
predictive power of the IFMs; thus suggesting that patch-
size-dependent migration was important in shaping the
regional dynamics of C. fenestrata.

In this study, | addressed two criticisms of the basic
form of Hanski’s IFM: that it ignores potentially im-
portant biotic and abiotic effects on regional population
dynamics, and that a number of methods for model
evaluation are suboptimal in various ways. | demon-
strated that patch size-dependent migration and asyn-
chronous extinctions significantly affected the regional
dynamics of C. fenestrata. The flood effect can be par-
ticularly important to regional dynamics because such
spatiotemporally correlated extinctions can signifi-
cantly reduce persistence time of a metapopulation
(Harrison and Quinn 1989). Finally, while the Monte
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Carlo method was developed for model parameteri-
zation (Moilanen 1999), the present study is the first
to use the Monte Carlo method to test the predictive
value of a patch occupancy model with independent
data. This study suggests that the logistic regression
method of model fitting is an acceptable substitute for
the Monte Carlo method even when occupancy patterns
are spatially autocorrelated.
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APPENDIX A
A discussion of selecting the appropriate basic incidence function model is available in ESA's Electronic Data Archive:

Ecological Archives E086-169-A1.

APPENDIX B
A table showing parameter estimates for the eight incidence function modelsis available in ESA's Electronic DataArchive:

Ecological Archives E086-169-A2.

APPENDIX C
A table showing observed metapopulation statistics and model predictions is available in ESA's Electronic Data Archive:

Ecological Archives E086-169-A3.



